A Hierarchical Architecture Description for Flexible
Multicore System Simulation

Thomas Bruckschloegl, Oliver Oey, Michael Rueckauer, Timo Stripf, Juergen Becker
Institute for Information Processing Technologies (ITIV)
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
{bruckschloegl, oey, rueckauer, stripf, becker }kit.edu

Abstract— As processors and systems on chip in the
embedded world increasingly become multicore, par-
allel programming remains a difficult, time-consuming
and complicated task. End users who are not parallel
programming experts have a need to exploit such pro-
cessors and architectures, using high level programming
languages, like Scilab or MATLAB. The ALMA toolset
solves this problem: it takes Scilab code as input and
produces parallel code for embedded multiprocessor
systems on chip, using platform quasi-agnostic opti-
mizations. The platform information is provided by
an architecture description language designed for the
purpose of a flexible system description as well as simu-
lation. A hierarchical system description in combination
with a parameterizable simulation environment allows
fine-grained trade-offs between simulation performance
and simulation accuracy

I. INTRODUCTION

Many performance-critical applications (e. g. digital video
processing, telecoms, and security applications) that need to
process huge amounts of data in a short time benefit from
efficient, flexible, and high performance systems on chip.
Research projects such as MORPHEUS [1] and CRISP [2]
have demonstrated the feasibility of such an approach and
presented the benefit of heterogeneity and parallel processing
on a real hardware prototype.

The FEuropean project ALMA, Architecture oriented
paraLlelization for high performance embedded Multicore sys-
tems using scilAb (alma is Greek for “leap”) [3], intends to
provide a full design framework for designing parallel and
concurrent computing systems. The design framework relies
on Scilab, an open source language for developing high-level
system models. The ALMA parallel software optimization
environment is combined with a SystemC simulation frame-
work to allow an iterative optimization by using profiling
information of the intermediate parallel code.

The toolset is based on an Architecture Description Lan-
guage (ADL) that is designed for providing abstract informa-
tion about the hardware structure and hardware behavior.
The ADL makes use of a hierarchical description that allows
for a flexible simulation of the multicore system on different
abstraction levels resulting in possible fine-grain trade-offs
between simulation speed and simulation accuracy.

In this paper we present the ALMA toolset enabling
compilation of Scilab source code to multicore architectures.
The rest of this paper is organized as follows: Section II gives
an overview of the ALMA toolset including a brief description

of the individual components. The ADL is introduced in
Section III. In Section IV the method and use of hierarchical
descriptions within the ADL is explained, followed by a de-
scription of the evaluation and simulation system in Section
V. The evaluation results are presented in Section VI and a
conclusion of the paper and future work is given in Section
VII.

II. ALMA ToOOLSET OVERVIEW

The ALMA toolset provides an end-to-end tool chain
from Scilab [4] code to executable code on embedded mul-
ticore systems. A typical end user that will use the ALMA
toolset will start the application development by implement-
ing Scilab code and specifying an abstract description of the
target architecture using the ALMA Architecture Description
Language (ADL). The Scilab application can be augmented
with additional information in a C like declaration language
to provide the tool-chain with maximum sizes of variables
and further data to improve the parallelization process.
In this user-driven perspective, two distinct phases can be
identified. The first phase includes code transformations from
Scilab to an Intermediate Representation (IR) and optimiza-
tions based on the IR and the architecture specification. The
second phase is closer to the hardware: It transforms the IR
produced by the first phase to executable code for the target
embedded multicore architecture. The toolset workflow is
presented in Figure 1.

The first phase of the toolset operates on an intermediate
representation of the Scilab source code and performs opti-
mizations based on a multicore ADL description (see Section
III). This phase consists of three big steps: The frontend, the
coarse grain parallelism extraction and optimization, and the
fine grain parallelism extraction.

The MatrixFrontend converts the Scilab code into se-
quential C code that is then transformed to the ALMA
IR. Scilab an Matlab are interpreted languages that feature
dynamic typing and late binding, which poses a problem for
the parallelization of the code. If, for example, the size of
a matrix is not known at compile-time, a more generic im-
plementation needs to be used instead of a highly optimized
parallel code. Therefore the MatrixFrontend features a type
inference step which calculates the types of variables and
operators at compile time and subsequently generates code
that uses static data, thus omitting dynamic type checking,
and generates type specific operations where possible.

The fine grain parallelism extraction works on the ALMA



	Introduction
	ALMA Toolset Overview
	Architecture Description Language
	The Hierarchical Approach
	Hierarchical system description
	Hierarchie flattening

	Simulation Environment
	Simulation generation
	Simulation environment implementation and timing

	Simulation Evaluation and results
	Evaluation system description
	Evaluation parameters
	Simulation accuracy

	Conclusion
	References

